- **I.** (20 Points) Answer by <u>True</u> or <u>False</u>. To obtain complete grade, show all the calculations and proofs where needed:
 - If the square matrices A and B are symmetric then the matrix (A + B) is symmetric (.....).
 Det(AA) = 4Det(A) for all (A × A) matrices (_____)

2)
$$\text{Det}(4\text{A}) = 4\text{Det}(\text{A})$$
 for all (4×4) matrices (.....).
3) The matrices $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$ and $B = \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}$ are inverses (.....).

 The determinant of any diagonal (n × n) matrix is the product of the entries on the main diagonal (.....).

5) The matrix $\begin{bmatrix} k^2 & 1 & 4 \\ k & -1 & -2 \\ 1 & 1 & 1 \end{bmatrix}$ is invertible for all <u>positive</u> constants k (.....).

6) The vectors
$$\vec{v} = (a,b)$$
 and $\vec{w} = (-b,a)$ are orthogonal vectors (.....).

7) If
$$\|\vec{ku}\| = k \|\vec{u}\|$$
, then $k \ge 0$ (.....)

8) The determinant of
$$A = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 \end{bmatrix}$$
 is 0 (.....).

- 9) The system $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is inconsistent (.....)
- 10) If a matrix *A* is in reduced row echelon form, then at least one of the entries in each column must be 1 (.....).

- **II.** (10 Points) Find the Area of the triangle having vertices A(0;2;3), B(1;0;1) and C(2;1;0). Having the area, deduce the length of the altitude from vertex C to side AB.
- **III.** (15 Points) Consider two distinct numbers, *a* and *b*. We define the function:

$$f(t) = \det \begin{bmatrix} 1 & 1 & 1 \\ a & b & t \\ a^2 & b^2 & t^2 \end{bmatrix}$$

- a) Show that f(t) is a quadratic function (i.e. of degree 2). What is the coefficient of t^2 ?
- b) Explain why f(a) = f(b) = 0. Conclude that f(t) = k(t-a)(t-b), for some constant k. Find k using your work in part (a).
- c) For which values of t is the matrix invertible?

IV. (20 Points) Let $\vec{u} = (3;2;1)$, $\vec{v} = (5;-3;4)$ and $\vec{w} = (1;6;-7)$. Compute the following:

a)
$$\|\vec{u}\| (\vec{v} \bullet \vec{w})$$

b) $\|proj_{\vec{u}} \vec{v}\|$
c) $\|\vec{3u} - \vec{5v} + \vec{w}\|$
d) $\vec{u} \cdot (\vec{w} \times \vec{v})$
e) $\vec{u} \times (\vec{v} - 2\vec{w})$

V. (20 Points) Let the vectors $\vec{u} = (1; -1; 3)$, $\vec{v} = (1; -2; -7)$ and $\vec{w} = (2; 3; 4)$. Find scalars c_1 , c_2 , and c_3 such that $c_1\vec{u} + c_2\vec{v} + c_3\vec{w} = (8; 1; 10)$ $\begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 4 & 1 \end{pmatrix}$

VI. (15 Points) Let
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

a) Show that A can be written as $aI_3 + bB$, where a, b are scalars to determine, and I_3 is the identity matrix (3×3) .

- b) Determine B^2 .
- c) Determine A^2 and verify that $A^2 = 7A 10I_3$
- d) Determine A^{-1}